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Abstract

Humans exhibit remarkable flexibility in adapting their motor behavior to a changing environment, while this remains a
major challenge for robotic systems. In this study, we investigated: 1) how action selection is influenced by uncertainties
arising from environmental volatility, stochasticity, and internal motor noise; and 2) whether the motor system responds
to those uncertainties differently compared to other decision-making systems. Participants performed an air hockey task
in which they controlled a virtual paddle by moving a trackpad to shoot a puck toward a goal. To manipulate envi-
ronmental uncertainties, we varied the strength and direction of a wind that affected the puck’s movement trajectory.
Interestingly, the learning rate decreased as stochasticity increased and increased with higher volatility, consistent with
predictions from a Bayesian optimal model. As a non-motor version of the task, participants completed a similar task
but reported their desired speed and direction instead of physically moving the paddle, with all sources of uncertain-
ties carefully matched between tasks. While participants also adjusted to stochasticity and volatility in the non-motor
task, their overall error significantly increased compared to the motor task. Interestingly, participants showed less sen-
sitivity to the change in the signal-to-noise ratio and sometimes adopted a learning rate beyond the optimal level in the
non-motor task, leading to an overestimation of stochasticity. These findings demonstrate that humans respond more
optimally to environmental uncertainty when the task requires motor system engagement compared to when decisions
are made without physical movement.
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1 Introduction

Living organisms including humans are remarkably adept at adjusting their movements to operate in an uncertain envi-
ronment, flexibility that remains a major challenge for artificial agents and robots [1]. In the current study, we examined
how action selection is modulated by uncertainty arising from the environment and internal noise (Fig 1A). In terms
of the environment, two distinct sources of uncertainty have been shown to influence learning – volatility and stochas-
ticity [2, 3]. Volatility refers to how rapidly properties of the environment change. In response to high volatility, an
agent should increase the learning rate so as to be able to rapidly adjust to these changes. Stochasticity refers to random
fluctuations in the environment (e.g., noise), where the resultant changes do not convey meaningful information about
underlying structural changes. In the face of high stochasticity, the agent should reduce its learning rate. Internal un-
certainty arises from the inherent noise within the motor system [4]. The agent should not respond to the error caused
by motor noise. A fundamental challenge for the agent is to determine the source of an observed error and determine
how and if the system should be altered in response to the error [5]. In the current study, we manipulated environmen-
tal volatility and stochasticity, comparing their effects when choices were instantiated by movements or in a symbolic
manner.

2 Method

2.1 Air-Hockey Game with Motor Control

We designed a virtual air hockey game in which participants controlled a virtual paddle by moving their finger across a
trackpad, aiming to launch a puck toward a target (Fig. 1C). This task was designed to capture key features of real-life
skill learning, including: (1) delayed feedback about the outcome relative to the participant’s movement (similar to most
ball games); (2) dynamics governed by physical rules; (3) multidimensional control with redundant solution spaces; and
(4) the absence of visuo-proprioceptive discrepancies caused by feedback perturbations.

At the start of each trial, the screen displayed the puck and paddle at a starting position and a target, along with obstacles
between the start position and the target. Using the trackpad, participants moved the paddle to strike the puck. The
puck’s trajectory was determined by two factors: the speed and angle of collision, and a wind blowing at a constant
speed for a given trial. We assumed the puck’s movement was unaffected by friction. If the puck encounters an obstacle,
its trajectory is modified based on reflection principles. The puck continues moving until it hits the target or exits the
screen.

We employed a 2×2 between-subject design (n = 15 per condition), manipulating stochasticity and volatility (Fig. 1B). For
stochasticity, Gaussian noise was introduced with a standard deviation equal to 0% (low) or 30% (high) of the average
wind strength. For volatility, the direction (leftward or rightward) and strength of the wind condition were altered either
every 8–15 trials (high volatility) or every 20–40 trials (low volatility). Participants inferred changes in wind conditions
based on the observed trajectory of the puck. The positions of the target, puck, paddle, and obstacles remained fixed
across all trials within each condition.

2.2 Bayesian Observer Model

Following a simple Bayesian observer model, state estimation is determined by the environmental stochasticity and
volatility:

mt+1 = mt + αtδt (1)

αt =
wt + v

wt + v + s
(2)

wt+1 = (1− αt)(wt + v) (3)

where mt and wt are the estimates of the mean and variance at time point t; v and s are volatility and stochasticity; and
n is motor noise. We used this model to predict the ideal learning rate α (see Fig 1D).

2.3 Non-motor version of the air-hockey game

To investigate whether the motor system exhibits unique properties in response to uncertainty, we modified the task in
a second experiment. Here, the participants did not move across the trackpad to control how the paddle struck the puck
(Fig 1C bottom). Rather, they selected a position on a polar grid and clicked to confirm their choice to release the paddle.
They observed an animation in which the paddle moved straight toward the puck, with the initial angle of the puck’s
trajectory defined by a line from the paddle to the puck and the speed defined by the distance from the paddle to the
puck. As in Experiment 1, the trajectory of the puck was impacted by the wind and obstacles.
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One key difference between the non-motor and motor tasks is that, in the former, the puck trajectory was not dependent
on the participant’s movement; as such, we assume motor noise is essentially eliminated. We introduced an additional
source of noise in the non-motor version to make the tasks more similar in terms of noise structure. Participants were
informed that the weight of the puck could vary in a random manner across trials. This information was not specified in
advance; rather, the color of the puck changed after the collision to reveal its weight. In this way, the participant could
account for this “weight noise” when interpreting the subsequent puck trajectory.

Figure 1: Volatility and stochasticity have op-
posite effects on motor learning. A) Sources of
uncertainty in tasks where the decision depends
on a movement. B) State uncertainty arises from
volatility and stochasticity. We employed a 2×2
design to manipulate these two forms of uncer-
tainty. C) Illustration of the air hockey game.
Bottom: In the non-motor version of the game,
participants clicked on a polar grid to decide
where to release the puck. D) Top: Predicted
learning rates of a Bayesian observer under dif-
ferent uncertainty conditions, color-coded based
on panel B. Bottom: Observed learning rates in
both motor and non-motor tasks align with pre-
dictions from the Bayesian observer model. E)
Learning curves for the motor version of the air
hockey game. We measured learning rates from
the first five trials after a change in the wind,
controlling the stimuli such that the experienced
wind conditions were identical across all four
groups.

2.4 Analysis

Participants controlled the direction and speed of the paddle at the moment of collision with the puck. Since the target
and the initial position of the puck are vertically aligned, hitting the target requires that the collision speed (V ) and the
wind acceleration (W ) satisfy the following equation:

Vx · Vy = C ·W, (4)

where Vx and Vy are the speed components in the x- and y-directions, respectively, and C is a constant scaled by the
distance between the target and the initial position of the puck. We refer to the left side of the equation (Vx · Vy) as the
measurement of behavior and the right side (C ·W ) as the solution. When the wind changes, the participants’ behavior
should gradually converge to the new solution.

To quantify this learning process, we define the relative error as:

Error =
C ·Wn − Vx · Vy

C · (Wn −Wo)
, (5)

where Wn is the new wind acceleration and Wo is the old wind acceleration. We fit an exponential function to the relative
error data at the group to estimate the learning rate. 95% confidence intervals were estimated by bootstrap.

2



3 Results

3.1 Motor task

Error increased following a change in the wind, and participants adjusted their movements to discover a new solution
(Fig. 1E). Across all conditions, they rapidly adapted their motor strategy, as indicated by the sharp decrease in relative
error. Behavior reached an asymptotic level by around the fifth trial.

The learning rate was modulated by both volatility and stochasticity. Consistent with the optimal Bayesian model,
these variables had opposing effects (Fig. 1D). Participants in high-volatility conditions exhibited a higher learning
rate compared to their low-volatility counterparts (bootstrap, ps < 0.001), while those in high-stochasticity conditions
showed a lower learning rate (bootstrap, ps < 0.005).

Figure 2: Participants overcompensate for
noise when the decision does not tax the motor
system. A) Learning curve measured in terms
of relative error in the non-motor task (light blue
and orange), with the data from Exp 1 replot-
ted for comparison (motor task: dark blue and
dark red). B) For the high-stochasticity condi-
tion, participants showed a higher learning rate
in the non-motor task. For the low-stochasticity
condition, the learning rate was similar across
the two tasks. C) Learning curve measured in
terms of absolute error. D) Participants consis-
tently showed a larger error in the non-motor
version, regardless of the difference in learning
rate. E) Trial-by-trial changes in hand angle as a
function of error induced by wind stochasticity.
An optimal response would show no systematic
adjustment to noise (zero slope). The stronger
correlation in the non-motor task indicates over-
compensation for stochastic noise. Error bars
represent 95% confidence intervals. F) Hypothe-
sized learning rate dynamics: Participants in the
motor task may rapidly increase and then de-
crease their learning rate following environmen-
tal changes, leading to a lower time-averaged
learning rate but higher overall accuracy com-
pared to the non-motor task.

3.2 Comparing to a Non-Motor Decision-Making Task

To assess whether sensitivity to uncertainty differs between movement-dependent decisions and non-motor decisions,
we tested another group of participants using a modified version of the air hockey game. In this version, participants
selected a release position for the paddle that determined the contact angle and speed (Fig. 1C, bottom).

Similar to the motor task, we observed that high volatility increased the learning rate while high stochasticity decreased
it (Fig. 1D). However, when directly comparing performance between the two tasks, we found notable differences. For
example, in low-volatility conditions, participants exhibited a faster learning rate in the non-motor version (Fig. 2B;
bootstrap, ps < 0.001) yet had larger overall errors (Fig. 2D; bootstrap, ps < 0.001). This suggests that participants may
apply a learning rate larger than the optimal value in the non-motor task.
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Consistent with this interpretation, we also observed differential sensitivity to errors caused by wind noise. Specifically,
participants in the non-motor task showed stronger trial-by-trial responses to the noise signal (Fig. 2E; Spearman cor-
relation, ps < .001). They appeared to attribute some stochastic variation to volatility changes in the high-stochasticity
condition, inflating the learning rate and increasing response variability.

Based on these observations, we propose a possible explanation for the interaction between learning rate and error in
motor versus non-motor tasks (Fig. 2F). We posit that participants were more sensitive to changes in the signal-to-noise
ratio. When the wind state changed, they observed a large error and rapidly increased their learning rate. Critically,
they should then quickly reduce the learning rate to avoid overfitting to noise. However, non-motor task participants
decreased their learning rate more slowly, resulting in an overall inflated learning rate and greater error. This hypothesis
should be tested in future work on model fitting.

3.3 Discussion

Our results indicate that, within a motor task, the nervous system correctly attributes three types of uncertainty: (1)
volatility and (2) stochasticity of environmental states, and (3) internal motor noise. Participants adapted their learning
rates to different environmental contexts in a manner consistent with Bayesian optimal models. Surprisingly, when the
task retained a similar structure but removed the requirement for continuous motor control, participants appeared to
attribute some degree of environmental stochasticity to volatility and thus adopted suboptimal strategies. Specifically,
instead of adjusting minimally to the random noise sources, they tended to overcorrect on each trial, leading to inflated
response variance and overall errors.

One interpretation is that the motor system, honed by extensive experience with bodily movements and sensory feed-
back, has specialized neurocomputational routines for accurately parsing different sources of uncertainty. In contrast,
when internal cues associated with movement are absent (e.g., efference copies, proprioceptive feedback), participants
overreact to random fluctuations [6]. These findings suggest that the ability of nervous system to handle multiple un-
certainties relies on specialized motor processes, offering insights for training paradigms, adaptive robotics, and broader
principles of human learning.
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